
Mitochondria have their own genome, which 
reflects their bacterial ancestry. The size of mito-
chondrial DNA varies considerably (e.g. 17 kb in
human and 367 kb in Arabidopsis thaliana), but 
generally encodes only a limited set of proteins (e.g.
13 in human and 32 in A. thaliana). Mitochondria,
however, are complex structures consisting of up to
1000 different proteins. Import of nucleus-encoded
proteins is therefore a process of fundamental 
importance for mitochondrial biogenesis. Nevertheless
synthesis of the limited set of mitochondria-
encoded proteins is essential for organelle function1.
Translation requires rRNAs and a complete set of
tRNAs, which, according to most textbooks, are 
encoded by the mitochondrial genome. However, as
early as 1967, the import of nucleus-encoded tRNAs
into the mitochondria was suggested to occur in
Tetrahymena2. But it has taken 25 years for the
process to be demonstrated directly using transgenic
plants3. Today, it is well established that mito-
chondrial tRNA import is a process occurring in a
number of evolutionary distinct organisms such as
plants, the yeast Saccharomyces cerevisiae and many
protozoans. In all organisms, for any given tRNA
that is imported, most of the total tRNA synthesized
in the nucleus remains in the cytosol and functions
in cytosolic translation. The specificity and the extent
to which individual tRNAs are imported, however,
differs greatly between organisms and might reflect
fundamental differences in the mechanisms under-
lying tRNA import. In this report we summarize the
recent developments in the field of mitochondrial
tRNA import and emphasize the basic problems that
need to be solved.

Which organisms import tRNAs?
Mitochondrial import of a variable number of 

nucleus-encoded tRNAs is predicted to occur in 
different eukaryotic microorganisms (protozoa, fungi,
algae), in some plants and in a few animals belong-
ing to the Cnidaria and the Mollusca (Fig. 1). In most
cases, evidence for tRNA import is based on the lack
of a complete set of genes encoding tRNAs in the 
sequence of mitochondrial genomes. This prediction
is fairly accurate in organisms that lack a significant
number of essential mitochondrial tRNA genes.
However, if the set of mitochondrial tRNA genes is
nearly complete, the situation is more difficult 
because tRNA editing and variations in the codon
recognition mechanisms provide alternative ways to
compensate for the putative missing tRNA genes.
Furthermore, there are examples such as S. cerevisiae4

and the liverwort Marchantia polymorpha5 where
tRNAs overlapping in function to organelle-encoded
ones are imported. Yeast is of special interest in this
context because it contains a full set of functional
mitochondrial tRNA genes but nevertheless imports
a single tRNALys. Despite this reservation, it is clear
that import of tRNA into the mitochondria is a 
common occurrence among eukaryotes and occurred
early in evolution. Interestingly, for some species
where tRNA import has been predicted, closely 
related organisms can be found that most likely do
not import tRNAs (Fig. 1). This might suggest that,

since the loss of mitochondrial tRNA genes is likely
to be irreversible, mitochondrial tRNA import has a
polyphyletic origin.

Mammalian mitochondria lack nucleus-encoded
tRNAs, but there are some studies claiming that
other cytosolic RNAs, such as the RNA subunit of
RNase P6 and MRP RNase7 as well as cytosolic 5S
rRNA8 are imported. However, in most of these stud-
ies, it is difficult to definitively exclude cytosolic
contamination. Furthermore, more recent studies
have found that human mitochondria might have a
distinct RNase-P-like activity that is devoid of an
RNA subunit9. It is important to determine what
types of RNAs are imported as well as to obtain a
more accurate picture of the phylogenetic distribution
of (t)RNA import. Information gained from such
studies might help to answer the enigmatic question
of why tRNA import into mitochondria has been
‘invented’ during evolution.

What are the features of imported tRNAs?
All tRNAs that are imported into mitochondria are

of the eukaryotic cytosolic type, meaning that the
same gene codes for a tRNA involved in cytosolic as
well as in mitochondrial translation. Some tRNAs,
however, might acquire additional nucleotide modi-
fications after import10,11. In quantitative terms, the
imported tRNAs always represent only a small fraction
(~5%) of the total cellular amount. This includes the
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tRNATrp of Leishmania tarentolae, which in mito-
chondria, owing to reassignment of the stop codon
to tryptophan in the organellar translation, has to
decode UGA in addition to the normal tryptophan
codon UGG. Suppression of UGA stop codons in the
cytosol is expected to be harmful. In order to solve
this problem, L. tarentolae imports the normal 
cytosolic tRNATrp, which is unable to decode the stop
codon. Once inside the mitochondria, however, the
CCA anticodon of the tRNATrp gets converted to UCA
by RNA editing, allowing the tRNA to read both UGG
and UGA codons12. The number of imported tRNA
species varies to a great extent, and overall this does

not correlate with the phylogenetic position of the
organism (Fig. 1). For example, S. cerevisiae imports
a single tRNA, and a number of parasitic protozoa
import all mitochondrial tRNAs. Interestingly, inde-
pendent of the extent of tRNA import, one always
finds cytosol-specific tRNAs even in systems that 
import all mitochondrial tRNAs13.

What are the distinguishing features of imported
and purely cytosolic tRNAs? Despite the importance
of this question, there are only two examples where
the precise import determinants have been identi-
fied, the tRNAGln in Tetrahymena and the tRNALys in
S. cerevisiae (Fig. 2).

FIGURE 1

Predicted phylogenetic distribution of mitochondrial tRNA import. The phylogenetic tree is according to Gray et al.37 and based on
ultrastructural and molecular data. It includes a representative selection of organisms whose mitochondrial genomes have been

completely sequenced (URL http://megasun.bch.umontreal.ca/ogmpproj.html). Unbroken lines indicate firmly supported
phylogenetic relationships; broken lines indicate preliminary placements. Organisms predicted to import or to not import tRNAs are

shown on a blue or green background, respectively. The predicted number of imported tRNAs needed to complement the
mitochondria-encoded ones to reach the minimal set required for mitochondrial translation is indicated. The commonly used names
for the systematic groupings of the indicated organisms are shown in red. Abbreviations of the different species is according to Gray

et al.37 : Euglenozoa: LTA (Leishmania tarentolae), TBR (Trypanosoma brucei); Histionid: JLI (Jakoba libera), RAM (Reclinomonas
americana); Rhizopod: ACA (Acanthamoeba castellanii); Slime mold: DDI (Dictyostelium discoideum); Ciliate: PAU (Paramecium aurelia),

TPY (Tetrahymena pyriformis); Apicomplexan: PFA (Plasmodium falciparum), TPA (Theileria parva); Labyrinthulomycete: TAU
(Thraustochytrium aureum); Stramenopile: PIN (Phytophthora infectans); Chrysophyte: CSY (Chrysodidymus synuroideus), ODA

(Ochromonas danica); Bicosoecid: CRO (Cafeteria roenbergensis); Rhodophyte: CCR (Chondrus crispus), PPU (Porphyra purpurea);
Chlorophyte: CRE (Chlamydomonas reinhardtii), PMI (Pedinomonas minor), SOB (Scenedesmus obliquus), PWI (Prototheca wickerhamii);
Streptophyte: ATH (Arabidopsis thaliana); Charophyte: MPO (Marchantia polymorpha); Choanoflagellate: MBR (Monosiga brevicollis);

Cnidarian: MSE (Metridium senile); Mollusca: CGI (Crassostrea gigas), PST (Pupa strigosa); Chytridiomycete: SPU (Spizellomyces
punctatus), HAR (Harpochytrium sp.), AMA (Allomyces macrogynus); Ascomycete: SCE (Saccharomyces cerevisiae), SPO

(Schizosaccharomyces pombe). A complete set of mitochondrial tRNA genes is found in SCE, but experimental evidence shows that,
despite this, the cytosolic tRNALys (CUU) is in part imported (see text).
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Tetrahymena contains three homologous tRNAGln

molecules. Two of them with the anticodons UUA
and CUA are cytosol specific and recognize the stop
codon UCA, which has been reassigned to glut-
amine in the nucleus of Tetrahymena. The third
tRNAGln with the anticodon UUG recognizes the
standard glutamine codons, however, and is found
in both the cytosol and the mitochondria. In a
quantitative in vivo analysis it was shown that the
anticodon UUG of the imported tRNAGln is both
necessary and sufficient to induce import of any of
the three tRNAGln molecules14.

S. cerevisiae contains two different nucleus-
encoded tRNALys, only one of which is imported
into mitochondria4. Quantitative in vivo and in vitro
analysis identified the first base pair of the acceptor
stem and the anticodon of the imported tRNALys in
yeast as the main import determinants. It was 
further shown that import competence correlated
with binding to a soluble import factor15,16 (see below).

The identity of the import determinants in tryp-
anosomatid (T. brucei, Leishmania) tRNA remains
controversial. The D-stem loop appears to con-
tribute to the signal as shown in an in vitro import
study for tRNATyr of L. tropica19 (Fig. 2). These results
are supported by in vivo and in vitro experiments per-
formed in L. tarentolae that show that swapping the
D-loop stem from the exclusively cytosolic tRNAGln

with that from the imported tRNAIle produced a 
partial mitochondrial localization of the resulting
tRNA17,18. However, the converse experiment did
not work – tRNAIle remained cytosolic even when
carrying the D-stem loop of the cytosolic tRNAGln

(Ref. 17). Furthermore, no clear sequence element
within the D-stem loop could be found that is 
consistently present in imported but not in purely
cytosolic tRNAs20. In addition, it was shown that
even cytosolic tRNAs from yeast or human are 
imported into mitochondria when expressed in 
T. brucei21. It has also been claimed that, in T. brucei,
actual import substrates are precursor tRNAs having
long 59-extension or dimeric tRNA transcripts22

(Fig. 2). Using primer extension and northern analy-
sis, high-molecular-weight forms of tRNAs can be 
detected in mitochondrial RNA. However, some of
these appear to be caused by artifactual circulariz-
ation of tRNAs due to mitochondrial ligase activity23.
Nevertheless, using RT-PCR a dicistronic precursor
transcript consisting of a tRNASer and a tRNALeu 

separated by a short intergenic sequence has recently
been shown to exist in vivo22. Furthermore, in an in
vitro import system, only the dicistronic precursor
but not the derived mature tRNALeu was imported24.
However, in vivo studies in L. tarentolae and T. brucei
have shown that tRNAs are imported into mito-
chondria independently of their genomic context17,21.
In the latter case, even heterologous tRNAs flanked
by non-trypanosomal sequences were imported. 
In vivo evidence for the role of precursors in tRNA
import therefore remains to be demonstrated.

In summary, it is clear that more complete and
quantitative studies are needed to identify the im-
port determinants in plants and trypanosomatid
tRNAs. Such studies are important as they offer the

possibility to characterize protein factors interacting
with these elements. Furthermore, it is unresolved
why it is always only a fraction of a given tRNA that
is imported.

How are tRNAs imported into mitochondria?
Although the role of the single imported tRNALys

in S. cerevisiae is unclear as it cannot be aminoacyl-
ated inside mitochondria and as a mitochondria-
encoded tRNALys exists, its import pathway has been
elucidated in detail4. A combination of in vitro and
in vivo studies showed that the charged tRNA is co-
imported across the protein import pore using the
mitochondrial precursor of lysyl-tRNA synthetase
(preMSK) as a carrier, even though that protein can-
not aminoacylate the tRNA it transports. Import of
the tRNA – like protein import – requires internal
ATP and the membrane potential. Binding of
tRNALys to preMSK depends on specific regions in
the tRNA (as discussed above) as well as on amino-
acylation by the cytosolic lysyl-tRNA synthetase.
Furthermore, in vitro import studies showed that, be-
sides preMSK, at least one other as-yet-unidentified
factor is required for import of the tRNA protein
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FIGURE 2

Mitochondrial import determinants of nucleus-encoded tRNAs. Schematic
representation of the key import determinants of nucleus-encoded tRNAs of
Tetrahymena pyriformis14, Saccharomyces cerevisiae15,16, Leishmania tarentolae17,18 and
Trypanosoma brucei24 obtained from in vivo and/or in vitro analyses. Naturally
occurring cytosol-specific tRNAs or imported tRNAs are shown in green or blue,
respectively. tRNA variants with domains or nucleotides of their differently localized
counterparts are depicted in mixed colours. For T. brucei, the dimeric precursor tRNA
is shown in blue, whereas the mature tRNALeu suggested to remain in the cytosol is
shown in green. When contributing to the import signal, anticodons and the 1:72
nucleotide pairs are indicated. In S. cerevisiae, the aminoacylated tRNALys is shown
because the lysine residue was shown to be required for import.
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complex25. Numerous studies have established that
proteins need to be unfolded during passage across
the mitochondrial membranes26. It is therefore a
challenge to explain how the interaction between
unfolded preMSK and the imported tRNALys can be
maintained during transport. Although unfolding
of the protein is essential for import, this might not
apply for the tRNA since a nicked tRNALys could still
be imported into mitochondria as long as the 
two tRNA moieties were reannealed15. This is in
agreement with earlier in vitro studies using artificial
protein–DNA chimeras that demonstrated that the
protein-import channel is wide enough to accom-
modate double-stranded nucleic acids27.

Although preMSK is the crucial import factor in
yeast, there is circumstantial evidence that amino-
acyl-tRNA synthetases might not play the same role
in other systems. Selective import of only some iso-
acceptors was observed in plants (for the tRNAGly

isoacceptors)28 and in Tetrahymena (for the tRNAGln

isoacceptors)14. Furthermore, expression of plant
mitochondrial alanyl-tRNA synthetase in yeast did
not induce import of the coexpressed plant or the
endogenous yeast tRNAAla (Ref. 29). Finally, in T.
brucei, a mutant tRNATyr that cannot be charged
could still be imported30. The described experiments
argue against a crucial role for aminoacyl-tRNA
synthetases in tRNA import – but they cannot 
definitively exclude it.

Recently, in vitro tRNA import systems have been
established for T. brucei24,31 and two Leishmania
species18,32. One T. brucei system, although initially
thought to import full-size tRNAs, was later shown to
be competent only for the import of small RNA frag-
ments31. Its physiological significance is therefore
questionable and it will not be discussed further. All
the other systems show some common features: pre-
treatment of mitochondria with protease abolished
import, indicating the need for proteinaceous recep-
tors on the surface of mitochondria. In L. tropica,
it was shown that antibodies against a protease-
sensitive RNA-binding protein of 15 kDa inhibited
import. Surprisingly, however, the putative import
receptor was found both associated with mitochon-
dria but also localized throughout the cell32. In all
systems, import required external and probably in-
ternal ATP as well as one or both components of the
electrochemical proton gradient18,24,33. Import sub-
strates between Leishmania and Trypanosoma appear
to be quite different. In Leishmania, mature tRNAs
were imported and a cytosol-specific tRNA was
not18,32. In T. brucei, on the other hand, only dimeric
precursor tRNA was imported – but not its mature de-
rivative24. Surprisingly, however, even though an
RNase-P-like activity has been detected in mitochon-
drial extracts22, no processing of the imported transcript
was observed. Furthermore, it remains to be demon-
strated that the substrate tRNAs have indeed crossed
both membranes and are localized in the matrix.

None of the assays in Leishmania or T. brucei
requires the addition of cytosolic factors, which ar-
gues that the import mechanism is different from
that in yeast. However, it cannot be excluded that
contaminating cytosolic factors are present in the

crude mitochondrial fractions used for the import
assays. The identity of the 15-kDa putative tRNA
import receptor in L. tropica is unclear, so it could in
principle be a component of the protein-import
machinery. Furthermore, the established energy re-
quirement for tRNA import does not allow us to dis-
tinguish between yeast-like co-import or any other
mechanism. In the light of the evolutionary distri-
bution of tRNA import (Fig. 1), it is unlikely that only
one mechanism exists. Identification of import fac-
tors in the different organisms should be a priority of
future research as it will allow this question to be de-
finitively settled. It would be especially interesting in
this regard to learn more about the plant system, the
import mechanism of which has remained obscure
owing to the lack of an in vitro system.

Practical applications of mitochondrial tRNA
import

Mitochondrial tRNA import might have some ex-
citing practical applications. At present, only very few
systems are amenable to direct mitochondrial trans-
formation. tRNA import offers an alternative tool to
study mitochondrial gene expression since it might
allow import of synthetic sequences (e.g. antisense
RNAs or ribozymes) that would potentially interfere
with intramitochondrial functions (e.g. translation or
RNA editing). Indeed, it was shown in L. tarentolae
that a splicing-deficient tRNATyr can be used to im-
port synthetic introns of up to 40 nucleotides in
length34. More recently, an elegant study in S. cere-
visiae showed that it is possible to complement a non-
sense mutation in the mitochondrial COX2 gene by
nuclear transformation of a suppressor variant of the
imported tRNALys (Ref. 35). Even though the im-
ported tRNALys cannot be charged inside mitochon-
dria, it is imported in its aminoacylated form and
therefore might still participate in mitochondrial
translation. Furthermore, the experiment demon-
strates for the first time that tRNA import can be used
to cure respiratory defects caused by mutations in the
mitochondrial DNA. This is of great medical interest
since a number of human mitochondrial cytopathies
(e.g. MELAS, mitochondrial myopathy encephal-
opathy with acid lactosis and stroke-like episodes;
MERF, myoclonic epilepsy and ragged-red fibres 
syndrome) are caused by point mutations in mito-
chondria-encoded tRNAs36. Many of these diseases
might theoretically be treated by nuclear transfection
with the corresponding wild-type tRNA gene – but
only if the tRNA can be imported into mitochondria.
Although human mitochondria do not normally 
import tRNAs, a recent study showed that it is possi-
ble to import the yeast tRNALys into isolated human
mitochondria as long as soluble yeast import-directing
factors are present35. It should therefore in principle
be possible to transplant the tRNA-import system of
yeast into human cells. Finally, tRNA import is 
extensive in trypanosomatids and apicomplexans,
many of which are important clinical pathogens. The
hosts of these parasites, however, do not import
tRNAs. The process offers therefore a novel potential
target for a chemotherapeutic attack on these 
organisms.
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Future research on the various tRNA import sys-
tems will therefore not only reveal novel insights
into an as yet poorly understood basic biological
process but may also have impact on the treatment
of clinically important human diseases.
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